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Abstract

Parallel best-first search algorithms such as HDA* distribute
work among the processes using a global hash function. Pre-
vious work distribution strategies seek to find a good wall-
time efficiency by reducing search overhead and/or com-
munication overhead, but there was no unified, quantitative
analysis on the effects of the methods on both overheads.
We propose GRAZHDA*, a graph-partitioning based ap-
proach to automatically generating feature projection func-
tions. GRAZHDA* seeks to approximate the partitioning of
the actual search space graph by partitioning the domain tran-
sition graph, an abstraction of the state space graph. We eval-
uate GRAZHDA* on domain-independent planning as well
as a domain specific solver for the 24-puzzle and show that
GRAZHDA* outperforms previous methods.

1 Introduction
The A* algorithm (Hart, Nilsson, and Raphael 1968) is used
in many areas of AI, including planning, scheduling, path-
finding, and sequence alignment. Parallelization of A* can
yield speedups as well as a way to overcome memory lim-
itations – the aggregate memory available in a cluster can
allow problems that can’t be solved using 1 machine to be
solved. Thus, designing scalable, parallel search algorithms
is an important goal.

Hash Distributed A* (HDA*) is a parallel best-first search
algorithm in which each processor executes A* using lo-
cal OPEN/CLOSED lists, and generated nodes are assigned
(sent) to processors according to a global hash function
(Kishimoto, Fukunaga, and Botea 2013). HDA* can be used
in distributed memory systems as well as multi-core, shared
memory machines, and has been shown to scale up to hun-
dreds of cores with little search overhead. The performance
of HDA* depends on the hash function used for assigning
nodes to processors. Kishimoto et al. (2009; 2013) showed
that using the Zobrist hash function (1970), HDA* could
achieve good load balance and low search overhead. Burns
et al (2010) noted that Zobrist hashing incurs a heavy com-
munication overhead because many nodes are assigned to
processes that are different from their parents, and proposed
AHDA*, which used an abstraction-based hash function
originally designed for use with PSDD (Zhou and Hansen
2007) and PBNF (Burns et al. 2010). Abstraction-based
work distribution achieves low communication overhead,

but at the cost of high search overhead. Abstract Zobrist
hashing (AZH) (Jinnai and Fukunaga 2016a) achieves both
low search overhead and communication overhead by incor-
porating the strengths of both Zobrist hashing and abstrac-
tion. While the Zobrist hash value of a state is computed
by applying an incremental hash function to the set of fea-
tures of a state, AZH first applies a feature projection func-
tion mapping features to abstract features, and the Zobrist
hash value of the abstract features (instead of the raw fea-
tures) is computed. Improvements to domain-independent,
automated abstract feature generation methods for AZHDA*
were proposed in (Jinnai and Fukunaga 2016a). Although
these methods seek to reduce search/communication over-
heads in the HDA* framework, these methods can be char-
acterized as bottom-up, ad hoc approaches that introduce
new mechanisms to address some particular problem within
the HDA*/AZHDA* framework, but these methods do not
allow a priori prediction of the communication and search
overheads that will be incurred.

This paper proposes a new, top-down approach to mini-
mizing overheads in parallel best-first search. Instead of ad-
dressing specific problems/limitations within the AZHDA*
framework, we formulate an objective function which de-
fines exactly what we seek in terms of minimizing both
search and communications overheads, enabling a predic-
tive model of these overheads. We then propose an algo-
rithm which directly synthesizes a work distribution func-
tion approximating the optimal behavior according to this
objective. The resulting algorithm, GRAZHDA* signifi-
cantly outperforms all previous variants of HDA*. We first
review HDA* and previous work distribution methods (Sec.
2). We then describe the relationship between the work
distribution method, search overhead, communication over-
heads and time efficiency, and propose an objective func-
tion for directly maximizing efficiency, which corresponds
to the problem of partitioning the state space graph ac-
cording to a sparsest-cut objective (Sec. 4-5). Next, we
propose GRAZHDA*, a new domain-independent method
for automatically generating a work distribution function,
which, instead of partitioning the actual state space graph
(which is impractical), generates an approximation by par-
titioning a domain transition graph (Sec. 6). We evaluate
GRAZHDA* experimentally on domain-independent plan-
ning using a commodity cluster (48 cores) as well as a cloud



cluster (128 cores), and show that it outperforms previous
methods (Sec. 7). We also evaluate GRAZHDA* for a
domain-specific, 24-puzzle solver on a multicore machine.

This paper summarizes work which will appear in a
JAIR article (Jinnai and Fukunaga 2017).

2 Background
Hash Distributed A* (HDA*) (Kishimoto, Fukunaga, and
Botea 2013) is a parallel A* algorithm where each processor
has its own OPEN and CLOSED. A global hash function
assigns a unique owner thread to every search node. Each
thread T repeatedly executes the following: (1) For all new
nodes n in T ’s message queue, if it is not in CLOSED (not a
duplicate), put n in OPEN. (2) Expand node n with highest
priority in OPEN. For every generated node c, compute hash
value H(c), and send c to the thread that owns H(c).

Although an ideal parallel best-first search algorithm
would achieve a n-fold speedup on n threads, several over-
heads can prevent HDA* from achieving linear speedup.
Communication Overhead (CO): Communication over-
head is the ratio of nodes transferred to other threads:
CO := # nodes sent to other threads

# nodes generated . CO is detrimental to perfor-
mance because of delays due to message transfers (e.g., net-
work communications), as well as access to data structure
such as message queues. HDA* incurs communication over-
head when transferring a node from the thread where it is
generated to its owner according to the hash function. In
general, CO increases with the number of threads. If nodes
are assigned randomly to the threads, CO will be propor-
tional to 1− 1

#thread .
Search Overhead (SO): Parallel search usually expands
more nodes than sequential A*. In this paper we define
search overhead as SO := # nodes expanded in parallel

#nodes expanded in sequential search − 1.
SO can arise due to inefficient load balance (LB). If load bal-
ance is poor, a thread which is assigned more nodes than oth-
ers will become a bottleneck – other threads spend their time
expanding less promising nodes, resulting in search over-
head.

There is a fundamental trade-off between CO and SO. In-
creasing communication can reduce search overhead at the
cost of communication overhead, and vice-versa.

Zobrist Hashing, Abstraction, and Abstract Zobrist
Hashing In the original work on HDA*, Kishimoto et al.
(2013) used Zobrist hashing (1970). The Zobrist hash value
of a state s, Z(s), is calculated as follows. For simplicity,
assume that s is represented as an array of n propositions,
s = (x0, x1, ..., xn). Let R be a table containing preinitial-
ized random bit strings.

Z(s) := R[x0] xor R[x1] xor · · · xor R[xn]

Zobrist hashing seeks to distribute nodes uniformly
among all threads, without any consideration of the neigh-
borhood structure of the search space graph. As a con-
sequence, communication overhead is high. Assume an
ideal implementation that assigns nodes uniformly among
threads. Every generated node is sent to another thread with
probability 1− 1

#threads . Therefore, with 16 threads, > 90%

of the nodes are sent to other threads, so communication
costs are incurred for the vast majority of node generations.

In order to minimize communication overhead in HDA*,
Burns et al (2010) proposed AHDA*, which uses abstrac-
tion based node assignment. AHDA* applies the state space
partitioning technique used in PBNF (Burns et al. 2010),
which in turn is based on PSDD (Zhou and Hansen 2007).
Abstraction projects nodes in the state space into abstract
states, and abstract states are assigned to processors using
a modulus operator. Thus, nodes that are projected to the
same abstract state are assigned to the same thread. If the
abstraction function is defined so that children of node n
are usually in the same abstract state as n, then communica-
tion overhead is minimized. The drawback of this method
is that it focuses solely on minimizing communication over-
head, and there is no mechanism for equalizing load bal-
ance, which can lead to high search overhead. Abstraction
is generally constructed by ignoring subset of features. It
has been shown that abstraction has roughly 2-4 times the
search overhead of Zobrist hashing on the 24-puzzle (Jinnai
and Fukunaga 2016a).

Dynamic AHDA* (DAHDA*), dynamically sets the
threshold of the abstract graph size according to the in-
stance’s state space size (Jinnai and Fukunaga 2016b).
DAHDA* was shown to significantly improve upon AHDA*
in distributed memory clusters, in cases where AHDA* fails
to solve many instances because of poor load balancing.

Abstract Zobrist hashing (AZH) (Jinnai and Fukunaga
2016a) is a hybrid hashing strategy which augments the Zo-
brist hashing framework with the idea of projection from ab-
straction, incorporating the strengths of both methods. The
AZH value of a state, AZ(s) is:

AZ(s) := R[A(x0)] xor R[A(x1)] xor · · · xor R[A(xn)] (1)

where A is a feature projection function, a many-to-one
mapping from from each raw feature to an abstract feature,
and R is a precomputed table for each abstract feature.

Thus, AZH is a 2-level, hierarchical hash, where raw
features are first projected to abstract features, and Zobrist
hashing is applied to the abstract features. Figure 1 illus-
trates the computation of AZH for the 8-puzzle.

AZH seeks to combine the advantages of both abstrac-
tion and Zobrist hashing. Communication overhead is min-
imized by building abstract features that share the same
hash value (abstract features are analogous to how abstrac-
tion projects states to abstract states), and load balance is
achieved by applying Zobrist hashing to the abstract features
of each state.

Compared to Zobrist hashing, AZH incurs less CO due
to abstract feature-based hashing. While Zobrist hashing as-
signs a hash value for each node independently, AZH assigns
the same hash value for all nodes which share the same ab-
stract features for all features, reducing the number of node
transfers. Also, in contrast to abstraction-based node assign-
ment, which minimizes communications but does not opti-
mize load balance and search overhead, AZH seeks good
load balance, because the node assignment considers all fea-
tures in the state, rather than just a subset.
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Figure 1: Calculation of abstract Zobrist hash (AZH) value AZ(s)
for the 8-puzzle: State s = (t1, t2, ..., t8), where ti = 1, 2, ..., 9.
The Zobrist hash value of s is the result of xor’ing a preinitialized
random bit vector R[ti] for each feature (tile) ti. AZH incorporates
an additional step which projects features to abstract features (for
each feature ti, look up R[A(ti)] instead of R[ti]).

Domain-Independent Feature Projection Functions for
Abstract Zobrist Hashing The feature projection func-
tion plays a critical role in determining the performance of
AZH, because AZH relies on the feature projection in or-
der to reduce communications overhead. Below, we review
two recently proposed domain-independent abstract feature
generation methods, GreedyAFG and FluencyAFG.

Greedy Abstract Feature Generation (Jinnai and
Fukunaga 2016a) Greedy abstract feature generation
(GreedyAFG) is a simple, domain-independent abstract fea-
ture generation method, which partitions each feature into 2
abstract features (Jinnai and Fukunaga 2016a). GreedyAFG
first identifies atom groups (sets of mutually exclusive
propositions from which exactly one will be true for each
reachable state, e.g., the values of a SAS+ multi-valued vari-
able (Bäckström and Nebel 1995)). Each atom group G is
partitioned into 2 abstract features S1 and S2, based G’s
undirected transition graph (nodes are propositions, edges
are transitions), as follows: (1) assign the minimal degree
node to S1; (2) greedily add to S1 the unassigned node
which shares the most edges with nodes in S1; (3) while
|S1| < |G|/2 repeat step (2) to guarantee ; (4) assign all
unassigned nodes to S2. This procedure guarantees |S2| ≤
|S1| ≤ |S2|+ 1.

Fluency-Dependent Abstract Feature Generation (Jinnai
and Fukunaga 2016b) Since the hash value of the state
changes if any abstract feature value changes, GreedyAFG
fails to prevent high CO when any abstract feature changes
its value very frequently. Fluency-dependent abstract feature
generation (FluencyAFG) overcomes this limitation (Jinnai
and Fukunaga 2016b). The fluency of a variable v is the #
of ground actions which change the value of the v divided
by the total # of ground actions in the problem. By ignor-
ing variables with high fluency, FluencyAFG was shown to
be quite successful in reducing CO and increasing speedup
compared to GreedyAFG.

A problem with fluency is that in the AZHDA* frame-

work, CO is associated with a change in value of an ab-
stract feature, not the feature itself. However, FluencyAFG
is based on the frequency with which features (not abstract
features) change. This leads FluencyAFG to exclude vari-
ables from consideration unnecessarily, making it difficult
to achieve good LB (in general, the more variables are ex-
cluded, the more difficult it becomes to reduce LB). For ex-
ample, in the grid domain, the atom group for the prob, the
SAS+ variable representing the robot’s position has high flu-
ency (∼ 1.0), so FluencyAFG marks it for exclusion, but the
value of the abstract feature for prob seldom changes because
the size of the grid is very large.

3 Work Distribution as a Graph Partitioning
Although previous research on work distribution for HDA*
proposed methods which reduce CO or SO, there was no
explicit model which enabled the prediction of the actual
efficiency achieved during search.

In this section, we show that a work distribution method
can be modelled as a partition of the search space graph,
and that communication overhead and load balance can be
understood as the number of cut edges and balance of the
partition, respectively.

Work distribution methods for hash-based parallel search
distribute nodes by assigning a process to each node in the
state space.

To guarantee the optimality of a solution, a parallel search
method needs to expand a goal node and all nodes with
f < f∗ (relevant nodes S). The workload distribution of a
parallel search can be modeled as a partitioning of an undi-
rected, unit-cost workload graph GW which is isomorphic
to the relevant search space graph, i.e., nodes in GW corre-
spond to states in the search space with f < f∗ and goal
nodes, and edges in the workload graph correspond to edges
in the search space between nodes with f < f∗ and goal
nodes. The distribution of nodes among p processors corre-
sponds to a p-way partition of GW , where nodes in partition
Si are assigned to process pi.

Given a partitioning of GW , LB and CO can be estimated
directly from the structure of the graph, without having to
run HDA* and measure LB and CO experimentally, i.e., it
is possible to predict and analyze the efficiency of a work-
load distribution method without actually executing HDA*.
Therefore, although it is necessary to run A* or HDA* once
to generate a workload graph,1 we can subsequently com-
pare the LB and CO of many partitioning methods without
re-running HDA* for each partitioning method. LB corre-
sponds to load balance of the partitions and CO is the num-
ber of edges between partitions over the number of total
edges, i.e.,

CO =

∑p
i

∑p
j>i E(Si, Sj)∑p

i

∑p
j≥i E(Si, Sj)

, LB =
|Smax|

mean|Si|
, (2)

1Hence, this is not yet a practical method for automatic hash
function generation – a further approximation of this model which
does not require generating the workload graph, and yields a prac-
tical method is described in Section 6.



where |Si| is the number of nodes in partition Si,
E(Si, Sj) is the number of edges between Si and Sj , |Smax|
is the maximum of |Si| over all processes, and mean|S| =
|S|
p .

Next, consider the relationship between SO and LB. It has
been shown experimentally that an inefficient LB leads to
high SO, but to our knowledge, there has been no previous
analysis on how LB leads to SO in parallel best-first search.
Assume that the number of duplicate nodes is negligible2,
and every process expands nodes at the same rate. Since
HDA* needs to expand all nodes in S, each process expands
|Smax| nodes before HDA* terminates. As a consequence,
process pi expands |Smax|−|Si| nodes not in the relevant set
of nodes S. By definition, such irrelevant nodes are search
overhead, and therefore, we can express the overall search
overhead as:

SO =

p∑
i

(|Smax| − |Si|)

= p(LB − 1). (3)

4 Parallel Efficiency and Graph Partitioning
In this section we develop a metric to estimate the walltime
efficiency as a function of CO and SO. First, we define time
efficiency effactual := speedup

#cores , where speedup = Tn/T1,
Tn is the runtime on N cores. Our ultimate goal is to maxi-
mize effactual .
Communication Efficiency: Assume that the communi-
cation cost between every pair of processors is identical.
Then communication efficiency, the degradation of effi-
ciency by communication cost, is effc = 1

1+cCO , where
c = time for sending a node

time for generating a node .
Search Efficiency: Assuming every core expands 1 node at
a time and there are no idle cores, HDA* with p processes
expands np nodes in the same wall-clock time A* requires
to expand n nodes. Therefore, search efficiency, the degra-
dation of efficiency by search overhead, is effs = 1

1+SO .
Using CO and LB, we can estimate the time efficiency

effactual . effactual is proportional to the product of commu-
nication and search efficiency: effactual ∝ effc · effs . There
are overheads other than CO and SO such as hardware over-
head (i.e. memory bus contention) that affect performance
(Burns et al. 2010), but we assume that CO and SO are the
dominant factors in determining efficiency.

We define estimated efficiency effesti := effc · effs , and
we use this metric to estimate the actual performance (effi-

2The number of duplicate node is closely related to LB and CO.
If the order of node expansion is exactly the same as A*, then the
number of duplicate is 0. The duplicate nodes occur when LB is
suboptimal and the order of node expansion diverges from A*. The
other cause of duplicate is CO. Even if the load balance is opti-
mal, the optimal path may be disturbed by communication latency
and suboptimal path may be discovered first, resulting in duplicate
nodes. Therefore, optimizing LB and CO leads to reducing dupli-
cate nodes.

ciency) of a work distribution method.

effesti = effc · effs = 1/
(
(1 + cCO)(1 + SO)

)
= 1/

(
(1 + cCO)(1 + p(LB − 1))

)
(4)

Experiment: effesti model vs. actual efficiency We eval-
uated the performance of the following HDA* variants on
domain-independent planning.
• FAZHDA*: AZHDA* using fluency-based filtering (Fluen-

cyAFG) (Jinnai and Fukunaga 2016b).
• GAZHDA*: AZHDA* using greedy abstract feature generation

(GreedyAFG) (Jinnai and Fukunaga 2016a).
• OZHDA*: HDA* with Operator-based Zobrist hashing (Jinnai

and Fukunaga 2016b).
• DAHDA*: AHDA* (Burns et al. 2010) with dynamic abstrac-

tion size threshold (Jinnai and Fukunaga 2016b).
• ZHDA*: HDA* using Zobrist hashing (Kishimoto, Fukunaga,

and Botea 2013).

We implemented these HDA* variants on Fast Down-
ward (parallelized implementation using MPICH 3) using
the merge&shrink heuristic (Helmert et al. 2014) (abstrac-
tion size =1000). We selected a set of IPC benchmark in-
stances that are difficult enough so that parallel performance
differences could be observed. We ran experiments on a
cluster of 6 machines, each with an 8-core Intel Xeon E5410
(2.33 GHz), 16GB RAM, and 1000Mbps Ethernet intercon-
nect.We packed 100 states per MPI message.

Table 1 shows the speedups (time for 1 process / time for
48 processes). We included the time for initializing work
distribution methods (for all runs, the initializations com-
pleted in ≤ 1 second), but excluded the time for initializing
the abstraction table for the M&S heuristic. From the mea-
sured runtimes, we can compute actual efficiency effactual .
Then, we calculated the performance estimated effesti as fol-
lows. We generated the workload graph GW for each in-
stance (i.e., enumerated all nodes with f ≤ f∗ and edges be-
tween these nodes), and calculated LB, CO, SO, and effesti

using Eqs 2-4. Figure 2b, which compares estimated effi-
ciency effesti vs. the actual measured efficiency effactual ,
indicates a strong correlation between effesti and effactual .
Using least-square regression to estimate the coefficient a in
effactual = a · effesti , a = 0.86 with variance of residuals
0.013. Note that a < 1.0 because there are other sources
of overhead which not accounted for in effesti , (e.g. mem-
ory bus contention) which affect performance (Burns et al.
2010).

5 Sparsest Cut Objective Function
A standard approach to workload balancing in parallel sci-
entific computing is graph partitioning, where the workload
is represented as a graph, and a partitioning of the graph ac-
cording to some objective (usually the cut-edge ratio metric)
represents the allocation of the workload among the proces-
sors (Hendrickson and Kolda 2000; Buluç et al. 2013).

In Sec. 4, we showed that effesti can be used to effectively
predict the actual efficiency of a work distribution. By defin-
ing a graph cut objective such that the partitioning the nodes
in the search space (with f < f∗) according to this graph cut



objective corresponds to maximizing effesti , we would have
a method of generating an optimal workload distribution.

A sparsest cut objective for graph partitioning problem
seeks to maximize the sparsity of the graph (Leighton and
Rao 1999).We define sparsity as

Sparsity :=

∏k
i |Si|∑k

i

∑k
j>i E(Si, Sj)

, (5)

where |Si| is the sum of nodes weights in partition Si,
E(Si, Sj) is the sum of edge weights between partition Si

and Sj . Consider the relationship between the sparsity of a
state space graph for a search problem and the effesti met-
ric defined in the previous section. By equations 4 and 2,
Sparsity simultaneously considers both LB and CO, as the
numerator

∏k
i |Si| corresponds to LB and the denominator∑k

i

∑k
j>i E(Si, Sj) corresponds to CO.

Sparsity is used as a metric for parallel workloads in com-
puter networks (Leighton and Rao 1999; Jyothi et al. 2014),
but to our knowledge this is the first proposal to use sparsity
in the context of parallel search of an implicit graph.

Experiment: Relationship between Sparsity and effesti

To validate the correlation between sparsity and estimated
efficiency effesti , we used METIS (approximate) graph par-
titioning package (Karypis and Kumar 1998) to partition
modified versions of the search spaces of the instances used
in Fig. 2a. We partitioned each instance 3 times, where
each run had a different set of random, artificial constraints
added to the instance (we chose 50% of the nodes randomly
and forced METIS to distribute them equally among the par-
titions – these constraints degrade the achievable sparsity).
Figure 2c compares sparsity vs. effesti on partitions gener-
ated by METIS with random constraints. There is a clear
correlation between sparsity and effesti . Thus, partitioning
a graph to maximize sparsity should maximize the effesti

objective, which should in turn maximize actual walltime
efficiency.

6 Graph Partitioning-Based Abstract
Feature Generation (GRAZHDA*)

Since effesti model accurately estimates actual efficiency,
and sparsity has a strong correlation with effesti , a partition
of the state space graph which minimize sparsity should be
a (near) optimal work distribution which maximizes effesti .
Unfortunately, it is impractical to directly apply standard
graph partitioning algorithms to the state space graph be-
cause the state space graph is a huge implicit graph, and the
partitioner needs as input the explicit representation of the
relevant state space graph (a solution to the search problem
itself!).

Therefore, to generate a work distribution method for par-
allel A*, we have to partition some graph which is eas-
ily accessible from the domain description (e.g. PDDL,
SAS+). We propose Graph partitioning-based Abstract Zo-
brist HDA* (GRAZHDA), which approximates the optimal
strategy by partitioning domain transition graphs.

Given an atom group x ∈ X , its domain transition graph
(DTG) Dx(E, V ) is a directed graph where vertices V cor-
responds to the value of the atom group and edges E to their
transitions, where (v, v′) ∈ E if and only if there is an op-
erator o with v ∈ del(o) and v′ ∈ add(o) (Jonsson and
Bäckström 1998). We used DTGs of SAS+ variables.

Figure 3 shows the partitioning of a DTG (for the variable
representing package location) in the standard logistics
domain using sparsest cut objective function. Maximizing
sparsity results in cutting only 1 edge (i.e., good load bal-
ance).

GRAZHDA* treats each partition of the DTG as an ab-
stract feature in the AZH framework, assigning a hash value
to each abstract feature. Since the AZH value of a state is
the XOR of the hash values of the abstract features (Eqn
1), 2 nodes in the state space are in different partitions if
and only if they are partitioned in any of the DTGs. (Fig-
ure 4). Therefore, GRAZHDA generates 2n partitions from
n DTGs, which are then projected to the p processors (by
taking the partition ID modulo p). To make it likely that par-
titioning over the DTGs is a good approximation for parti-
tioning the actual state space graph, we set a weight for each
edge e = # ground actions which correspond to the transition

# ground actions . As DTGs
typically have < 10 nodes, we compute the optimal sparsest
cut with a straightforward branch-and-bound procedure.

7 Evaluation of GRAZHDA*
Figure 2a shows effesti for the various work distribution
methods, including GRAZHDA*/Sparsity (see Sec. 4 for
experimental setup and list of methods included in compar-
ison). To evaluate how these methods compare to an ideal
(but impractical) model which actually applies graph par-
titioning to the entire search space (instead of partitioning
DTG as done by GRAZHDA*), we also evaluated IdealAp-
prox, a model which partitions the entire state space graph
using the METIS (approximate) graph partitioner (Karypis
and Kumar 1998). IdealApprox first enumerates a graph
containing all nodes with f ≤ f∗ and edges between these
nodes and ran METIS with the sparsity objective (Eqn. 5)
to generate the partition for the work distribution. Generat-
ing the input graph for METIS takes an enormous amount of
time (much longer than the search itself), so IdealApprox is
clearly an impractical model, but it is a useful approximation
for an ideal work distribution.

Not surprisingly, IdealApprox has the highest effesti , but
among all of the practical methods, GRAZHDA*/sparsity
has the highest effesti overall. As we saw in Sec. 4 that
effesti is a good estimate of actual efficiency, the result sug-
gest that GRAZHDA*/sparsity outperforms other methods.
In fact, as shown in Table 1, GRAZHDA*/sparsity achieved
a good balance between CO and SO and had the highest ac-
tual speedup overall, significantly outperforming all other
previous methods.
Cloud Environment Results: In addition to the 48 core
cluster, we evaluated GRAZHDA*/sparsity on an Ama-
zon EC2 cloud cluster with 128 virtual cores (vCPUs) and
480GB aggregated RAM (a cluster of 32 m1.xlarge EC2 in-
stances, each with 4 vCPUs, 3.75 GB RAM/core. This is a
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Figure 3: Example of sparsest cut and GreedyAFG to a domain
transition graph in logistic domain.

less favorable environment for parallel search compared to a
“bare-metal” cluster because physical processors are shared
with other users and network performance is inconsistent
(Iosup et al. 2011). We intentionally chose this configura-
tion to evaluate work distribution methods in environment
which is significantly different from our other experiments.
Table 2 shows that as with the smaller-scale cluster results,
GRAZHDA*/sparsity outperformed other methods in this
large-scale cloud environment.
24-Puzzle Results: We evaluated GRAZHDA*/sparsity on
the 24-puzzle using a high-performance, domain specific 24-
puzzle solver using a disjoint PDB heuristic (Korf and Fel-
ner 2002) (node generation rate = 367,645 nodes/sec/core).
We compared GRAZHDA*/sparsity (automated abstract
feature generation) vs. AZHDA* with the hand-crafted
work distribution (AZHDA*/HandCrafted) used in (Jinnai
and Fukunaga 2016a) and ZHDA* (Kishimoto, Fukunaga,
and Botea 2013) on 100 random instances on a single
Xeon E5-2650 v2 2.60 GHz CPU. The average runtime
of sequential A* on the instances was 219 secs. With
8 cores, the speedups were 7.84(GRAZHDA*/sparsity),
7.85(AZHDA*/HandCrafted), and 5.95(ZHDA*). Thus, the
completely automated GRAZHDA*/sparsity is competitive
with a carefully hand-designed work distribution method.

8 Previous Methods as Graph Partitioning
Previous work distribution methods for parallel best-first
search can be understood in terms of the graph partition-
ing framework proposed in this paper. ZHDA*, the original
Zobrist-hashing based HDA* (Kishimoto, Fukunaga, and
Botea 2013), corresponds to an extreme case of the AZH
framework where every node is assigned to a different parti-
tion. Abstraction-based work partitioning in AHDA* (Burns
et al. 2010) can be described as partitioning to a subset of
DTGs such that each node is assigned to a different parti-
tion. Previous instances of the AZH framework (Jinnai and
Fukunaga 2016a) can be viewed as the generation abstract
features based on bisections of DTGs according to some ob-
jective. Consider weighted sparsity, a generalization of the
sparsity objective:

WSparsity :=

∏k
i |Si|+ wco∑k

i

∑k
j>i E(Si, Sj) + wlb

. (6)

Then, GreedyAFG (Jinnai and Fukunaga 2016a) can be de-
scribed as optimizing weighted sparsity with weights wco =
0, wlb = +∞. Because it only optimizes LB, GAZHDA*
often results in significantly suboptimal CO. For exam-
ple, Figure 3 shows that for this logistics domain DTG,
GreedyAFG ends up cutting 2 edges while SparsestAFG
cuts only 1. We evaluated effesti for various values of these
weights, and observed that peak effesti was in the vicinity of
wco = wlb = 0 (i.e., same as Eqn. 5), while overweighting
CO or LB (wco > 0.2 or wlb > 0.2) resulted in significantly
degraded effesti .

FAZHDA* (Jinnai and Fukunaga 2016b) can be described
as an extension of GAZHDA* which generates the partition
S1 = G,S2 = ∅ when the optimal sparsity is lower than
some threshold (control parameter).

Thus, by casting previous work distribution methods as
instances of the graph partitioning framework, it can be seen
that from the perspective of graph partitioning, previous
methods are ad hoc solutions to the problem of work dis-
tribution. In contrast, GRAZHDA*/sparsity explicitly seeks
a work distribution which addresses both LB and CO, and
our experiments validate the effectiveness of this top-down
approach.
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Figure 4: Partitioned DTGs and the resulting partitioniong of the state space by XORing the hash values of abstract features.

9 Conclusions
We proposed and evaluated a new, domain-independent ap-
proach to work distribution for parallel best-first search in
the HDA* framework. The main contributions are (1) pro-
posal and validation of effesti , a model of search and com-
munication overheads for HDA* which can be used to pre-
dict actual walltime efficiency, (2) formulating the optimiza-
tion of effesti as a graph partitioning problem with a sparsity
objective, and validating the relationship between effesti and
the sparsity objective, and (3) GRAZHDA*, a new work
distribution method which approximate the optimal strat-
egy by partitioning domain transition graphs. We exper-
imentally showed that GRAZHDA*/sparsity significantly
improves both estimated efficiency (effesti ) as well as ac-
tual performance (walltime efficiency) compared to previous
work distribution methods. Our results demonstrate the via-
bility of approximating the partitioning of the entire search
space by applying graph partitioning to an abstraction of the
state space (i.e., the DTG).

Despite significant improvements compared to previ-
ous work distribution approaches, there is room for im-
provement. The gap between the effesti metric for
GRAZHDA*/sparsity and a ideal model (IdealApprox) rep-
resents the gap between actually partitioning the state space
graph (as IdealApprox does) vs. the approximation obtained
by the GRAZHDA*/sparsity DTG partitioning. Closing this
gap in effesti is a direction for future work.
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Table 1: Comparison of effactual , effesti , average speedups (spdup), communication/search overhead (CO, SO) on 10 runs on
a commodity cluster with 6 nodes, 48 processes using merge&shrink heuristic. effesti (effactual ) with bold font indicates the
method has the best effesti (effactual ). Instance name with bold indicates that the best effesti method has the best effactual .

Instance A* GRAZHDA*/sparsity FAZHDA*
time expd effactual effesti spdup CO SO effactual effesti spdup CO SO

Blocks10-0 129.29 11065451 0.57 0.57 27.17 0.28 0.38 0.54 0.43 26.02 0.70 0.35
Blocks11-1 813.86 52736900 0.71 0.53 34.25 0.66 0.15 0.71 0.50 34.25 0.66 0.15
Elevators08-5 165.22 7620122 0.34 0.51 16.43 0.47 0.33 0.26 0.49 12.34 0.32 0.51
Elevators08-6 453.21 18632725 0.45 0.50 21.47 0.49 0.37 0.38 0.36 18.05 0.52 0.81
Gripper8 517.41 50068801 0.56 0.60 26.67 0.50 0.15 0.57 0.63 27.45 0.43 0.10
Logistics00-10-1 559.45 38720710 0.94 0.70 45.16 0.43 0.01 0.91 0.61 43.85 0.57 0.02
Miconic11-0 232.07 12704945 0.87 0.95 41.97 0.01 0.07 0.88 0.91 42.43 0.01 0.06
Miconic11-2 262.01 14188388 0.94 0.97 45.26 0.01 0.05 0.93 0.92 44.87 0.01 0.05
NoMprime5 309.14 4160871 0.50 0.58 23.95 0.80 -0.04 0.48 0.53 22.87 0.79 -0.05
NoMystery10 179.52 1372207 0.72 0.61 34.80 0.51 0.12 0.48 0.75 22.99 0.24 -0.44
Openstacks08-19 282.45 15116713 0.51 0.59 24.67 0.27 0.34 0.42 0.58 20.00 0.24 0.37
Openstacks08-21 554.63 19901601 0.53 0.65 25.23 0.17 0.35 0.52 0.62 24.97 0.15 0.35
Parcprinter11-11 307.19 6587422 0.42 0.54 20.26 0.26 0.55 0.27 0.49 13.08 0.26 0.61
Parking11-5 237.05 2940453 0.62 0.55 29.75 0.40 0.34 0.62 0.54 29.67 0.63 0.11
Pegsol11-18 801.37 106473019 0.44 0.72 21.03 0.39 0.02 0.44 0.71 20.97 0.39 0.00
PipesNoTk10 157.31 2991859 0.33 0.52 15.73 0.98 0.01 0.33 0.49 15.64 0.98 0.01
PipesTk12 321.55 15990349 0.70 0.66 33.78 0.46 0.05 0.83 0.65 39.65 0.46 0.03
PipesTk17 356.14 18046744 0.92 0.65 43.92 0.54 0.01 0.94 0.63 45.03 0.54 0.01
Rovers6 1042.69 36787877 0.86 0.79 41.17 0.15 0.14 0.84 0.72 40.48 0.15 0.17
Scanalyzer08-6 195.49 10202667 0.69 0.92 32.92 0.12 0.01 0.63 0.86 30.31 0.12 0.01
Scanalyzer11-6 152.92 6404098 0.91 0.78 43.83 0.16 0.13 0.57 0.63 27.31 0.18 0.34
Average 382.38 21557805 0.64 0.62 30.92 0.38 0.17 0.60 0.61 28.68 0.40 0.17
Total walltime 8029.97 452713922 277.91 301.38

GAZHDA* OZHDA* DAHDA* ZHDA*
effactual effesti spdup CO SO effactual effesti spdup CO SO effactual effesti spdup CO SO effactual effesti spdup CO SO

Blocks10-0 0.45 0.44 21.81 0.99 0.12 0.32 0.37 15.47 0.98 0.34 0.52 0.47 25.11 0.88 0.08 0.31 0.48 14.93 0.98 0.30
Blocks11-1 0.61 0.48 29.20 0.99 0.03 0.61 0.47 29.20 0.99 0.03 0.52 0.43 24.88 0.91 0.21 0.58 0.48 27.98 0.98 0.07
Elevators08-5 0.61 0.58 29.35 0.65 -0.00 0.46 0.64 21.86 0.09 0.44 0.57 0.51 27.59 0.83 -0.03 0.57 0.47 27.54 0.98 -0.03
Elevators08-6 0.72 0.76 34.52 0.24 -0.09 0.68 0.56 32.70 0.41 0.22 0.32 0.39 15.28 0.88 0.31 0.38 0.49 18.19 0.96 0.06
Gripper8 0.46 0.50 21.86 0.81 0.06 0.52 0.44 24.77 0.98 0.14 0.45 0.45 21.80 0.98 0.08 0.45 0.47 21.66 0.98 0.08
Logistics00-10-1 0.24 0.42 11.68 0.85 0.25 0.24 0.43 11.68 0.85 0.25 0.36 0.53 17.52 0.84 0.00 0.34 0.48 16.09 0.99 0.00
Miconic11-0 0.27 0.53 13.15 0.53 0.24 0.79 0.96 37.86 0.02 0.02 0.96 0.91 46.05 0.01 0.08 0.15 0.48 7.40 0.96 0.13
Miconic11-2 0.18 0.37 8.53 0.53 0.74 0.77 0.90 36.86 0.02 0.07 0.70 0.81 33.81 0.01 0.18 0.31 0.48 14.67 0.96 0.05
NoMprime5 0.39 0.48 18.55 0.95 -0.06 0.35 0.51 16.66 0.94 0.00 0.38 0.49 18.46 0.90 -0.05 0.35 0.47 16.63 0.98 -0.02
NoMystery10 0.40 0.66 18.98 0.42 -0.07 0.45 0.50 21.61 0.74 0.11 0.59 0.60 28.41 0.60 -0.07 0.45 0.49 21.68 0.99 -0.07
Openstacks08-19 0.46 0.58 22.14 0.38 0.21 0.36 0.55 17.11 0.34 0.32 0.51 0.66 24.54 0.24 0.18 0.54 0.47 25.99 0.99 -0.05
Openstacks08-21 0.53 0.65 25.67 0.15 0.31 0.82 0.49 39.34 0.92 0.05 0.56 0.68 26.72 0.13 0.28 0.81 0.51 39.06 0.92 -0.00
Parcprinter11-11 0.35 0.40 16.85 0.74 0.41 0.33 0.34 15.98 0.82 0.56 0.15 0.15 7.00 0.19 4.38 0.40 0.48 19.15 0.97 0.08
Parking11-5 0.59 0.49 28.43 0.98 0.02 0.56 0.46 26.76 0.97 0.07 0.60 0.59 28.84 0.52 0.07 0.56 0.47 27.09 0.98 0.04
Pegsol11-18 0.34 0.53 16.22 0.77 0.05 0.55 0.71 26.17 0.34 -0.03 0.46 0.70 22.16 0.34 -0.01 0.35 0.47 16.97 0.98 0.03
PipesNoTk10 0.32 0.50 15.58 0.98 0.01 0.32 0.48 15.22 0.98 0.02 0.32 0.48 15.58 0.98 0.01 0.07 0.48 3.22 0.98 -0.44
PipesTk12 0.41 0.48 19.84 0.99 0.01 0.45 0.49 21.40 0.88 0.04 0.52 0.57 25.12 0.67 0.00 0.41 0.48 19.78 0.98 0.00
PipesTk17 0.56 0.50 26.64 0.98 0.00 0.60 0.52 28.82 0.88 0.00 0.65 0.60 31.16 0.60 0.01 0.55 0.49 26.27 0.98 0.00
Rovers6 0.70 0.61 33.49 0.56 0.01 0.85 0.71 41.00 0.31 0.03 0.53 0.73 25.48 0.05 0.26 0.63 0.53 30.01 0.76 0.00
Scanalyzer08-6 0.42 0.54 20.28 0.77 0.01 0.49 0.58 23.70 0.66 0.01 0.44 0.51 21.23 0.94 0.00 0.34 0.48 16.54 0.98 0.01
Scanalyzer11-6 0.34 0.41 16.36 0.65 0.49 0.81 0.68 38.82 0.30 0.09 0.41 0.44 19.51 0.50 0.46 0.42 0.48 20.36 0.98 0.05
Average 0.45 0.51 21.39 0.71 0.13 0.54 0.53 25.86 0.64 0.13 0.50 0.47 24.11 0.57 0.31 0.43 0.49 20.53 0.96 0.01
Total walltime 398.75 331.18 377.86 433.23
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Table 2: Comparison of walltime, communication/search overhead (CO, SO) on a cloud cluster (EC2) with 128 virtual cores
(32 m1.xlarge EC2 instances) using the merge&shrink heuristic. We run sequential A* on a different machine with 128 GB
memory because some of the instances cannot be solved by A* on a single m1.xlarge instance due to memory limits. Therefore
we report walltime instead of speedup.

Instance A* GRAZHDA*/sparsity FAZHDA*
expd time CO SO time CO SO

Airport18 48782782 102.34 0.59 0.49 95.48 0.59 0.29
Blocks11-0 28664755 12.40 0.42 0.37 22.86 0.68 0.53
Blocks11-1 45713730 17.21 0.42 0.25 32.60 0.66 0.82
Elevators08-7 74610558 51.90 0.54 0.25 121.90 0.55 0.26
Gripper9 243268770 78.90 0.42 0.01 82.90 0.43 0.06
Openstacks08-21 19901601 6.30 0.23 0.06 5.76 0.19 -0.05
Openstacks11-18 115632865 33.10 0.24 -0.14 33.25 0.23 -0.12
Pegsol08-29 287232276 58.85 0.44 0.16 81.75 0.42 0.55
PipesNoTk16 60116156 120.64 0.94 0.84 106.28 0.94 0.72
Trucks6 19109329 8.01 0.17 0.46 51.51 0.19 0.34
Average 99361115 43.03 0.42 0.25 59.87 0.48 0.39
Total walltime 894250040 387.31 538.81

Instance GAZHDA* OZHDA* DAHDA* ZHDA*
time CO SO time CO SO time CO SO time CO SO

Airport18 128.22 0.98 0.02 123.09 0.90 0.56 143.27 0.92 0.36 106.80 0.99 0.02
Blocks11-0 21.75 0.98 0.65 21.70 0.99 0.70 20.29 0.95 0.88 29.19 0.99 0.35
Blocks11-1 25.84 0.98 0.56 24.84 0.86 0.78 29.52 0.94 0.83 36.04 1.00 0.52
Elevators08-7 61.16 0.70 0.05 86.65 0.07 0.22 52.09 0.96 0.18 59.88 1.00 0.04
Gripper9 85.98 1.00 0.16 90.98 0.98 0.20 95.72 1.00 0.15 105.78 1.00 0.17
Openstacks08-21 5.67 0.71 -0.35 40.06 0.96 0.00 6.94 0.69 -0.17 14.65 1.00 -0.09
Openstacks11-18 71.34 0.77 -0.09 79.34 0.81 -0.00 84.67 0.76 0.01 49.97 1.00 -0.53
Pegsol08-29 98.53 0.98 0.06 54.13 0.34 0.13 108.17 1.00 0.11 120.27 0.98 0.16
PipesNoTk16 108.28 0.95 0.78 120.21 0.99 0.73 125.37 1.00 0.72 149.96 1.00 0.73
Trucks6 30.22 0.94 0.41 32.22 0.96 0.57 17.19 0.53 0.43 28.22 1.00 0.34
Average 56.53 0.89 0.29 61.13 0.77 0.41 60.00 0.87 0.36 66.00 1.00 0.29
Total walltime 508.77 550.13 539.96 593.96


